Most of the Synapse server's state is in its SQLite database. It also
has a `media_store` directory that needs to be backed up, though.
In order to back up the SQLite database while the server is running, the
database must be in "WAL mode." By default, Synapse leaves the database
in the default "rollback journal mode," which disallows multiple
processes from accessing the database, even for read-only operations.
To change the journal mode:
```sh
sudo systemctl stop synapse
sudo -u synapse sqlite3 /var/lib/synapse/homeserver.db 'PRAGMA journal_mode=WAL;'
sudo systemctl start synapse
```
We're going to run MinIO on the BURP server to provide a backup target
for the [Postgres Operator][0]/[WAL-E][1]. Although the Postgres
Operator also supports backups via [WAL-G][2], which supports more
backup targets like SFTP, the operator does not support restoring from
those targets. As such, the best way to get fully-featured backups for
the Postgres Operator, including environment cloning, etc., is to use
S3. Since I absolutely do not want to store my backups "in the cloud,"
using MinIO seems a decent alternative. Running it on the BURP server
allows the backups to be stored and rotated along with regular system
backups.
[0]: https://github.com/zalando/postgres-operator/
[1]: https://github.com/wal-e/wal-e
[2]: https://github.com/wal-g/wal-g
Fedora now includes a packaged version of Nextcloud. This will be
_much_ easier to maintain than the tarball-based distribution method.
There are some minor differences in how the Fedora package works,
compared to the upstream tarball. Notably, it puts the configuration
file in `/etc/` and makes it read-only, and it stores persistent data
separate from the application. These differences require modifications
to the Apache and PHP-FPM configuration, but the package also included
examples to make this easier. Since the `config.php` is read-only now,
it has to be managed by the configuration policy; it cannot be modified
by the Administration web UI.
The *synapse* role and the corresponding `synapse.yml` playbook deploy
Synapse, the reference Matrix homeserver implementation.
Deploying Synapse itself is fairly straightforward: it is packaged by
Fedora and therefore can simply be installed via `dnf` and started by
`systemd`. Making the service available on the Internet, however, is
more involved. The Matrix protocol mostly works over HTTPS on the
standard port (443), so a typical reverse proxy deployment is mostly
sufficient. Some parts of the Matrix protocol, however, involve
communication over an alternate port (8448). This could be handled by a
reverse proxy as well, but since it is a fairly unique port, it could
also be handled by NAT/port forwarding. In order to support both
deployment scenarios (as well as the hypothetical scenario wherein the
Synapse machine is directly accessible from the Internet), the *synapse*
role supports specifying an optional `matrix_tls_cert` variable. If
this variable is set, it should contain the path to a certificate file
on the Ansible control machine that will be used for the "direct"
connections (i.e. on port 8448). If it is not set, the default Apache
certificate will be used for both virtual hosts.
Synapse has a pretty extensive configuration schema, but most of the
options are set to their default values by the *synapse* role. Other
than substituting secret keys, the only exposed configuration option is
the LDAP authentication provider.
* Need to apply the *postgresql-server* role to ensure PostgreSQL is
properly configured
* Need to supply a PostgreSQL certificate (use Let's Encrypt so we don't
have to manage a CA)
* Missing Ansible Vault file that includes the DB user password
The *nextcloud* role installs Nextcloud from the specified release
archive, downloading it to the control machine first if necessary, and
configures Apache and PHP-FPM to serve it.
The `nextcloud.yml` playbook uses the *cert* role to install the X.509
certificate for the Nextcloud server, sets up Apache HTTPD with the
*apache* role, and installs Nextcloud using the *nextcloud* role.
The host *cloud0.pyrocufflink.blue* is the Nextcloud server for
Pyrocufflink.
This commit configures *bw0.pyrocufflink.blue* as a BURP client, so that
the Bitwarden data can be backed up. A pre-backup script is used to
take a consistent snapshot of the SQLite database before copying it to
the BURP server.
Newer versions of Gitea need a JWT secret for Oauth2. Gitea will
attempt to generate one at startup if it is not already specified in the
configuration file, but this will fail since the file is not writable by
the user running the service. As such, it must be set via configuration
policy.
The host *zbx0.pyrocufflink.blue* (a Raspberry Pi) runs the Zabbix
server and web UI. It has a reserved IPv4 address to simplify reverse
DNS management for now, since Samba's dynamic DNS client does not
register PTR records.