Even with *collectd* configured to report filesystem usage by device, it
still only reports filesystems that are mounted (in its namespace).
Thus, in order for it to report filesystems like `/boot`, these need to
be mounted in the container.
I keep going back-and-forth on whether or not collectd should run in a
container on Fedora CoreOS machines. On the one hand, running it
directly on the host allows it to monitor filesystem usage by mount
point, which is consistent with how non-FCOS machines are monitored.
On the other hand, installing packages on FCOS with `rpm-ostree` is a
nightmare. It's _incredibly_ slow. There's also occasionally issues
installing packages if the base layer has not been updated in a while
and the new packages require an existing package to be updated.
For the NUT server specifically, I have changed my mind again: the
*collectd-nut* package depends on *nut-client*, which in turn depends on
Python. I definitely want to avoid installing Python on the host, but I
do not want to lose the ability to monitor the UPSs via collectd. Using
a container, I can strip out the unnecessary bits of *nut-client* and
avoid installing Python at all. I think that's worth having to monitor
filesystem usage by device instead of by mount point.
The only privilege NUT needs is access to the USB device nodes. Using a
device CGroup rule to allow this is significantly better than disabling
all restrictions. Especially since I discovered that `--privileged`
implies `--security-opt label=disable`, effectively disabling SELinux
confinement of the container.
NUT needs some udev rules in order to set the proper permissions on USB
etc. devices so it can run as an otherwise unprivileged user. Since
udev rules can only be processed on the host, these rules need to be
copied out of the container and evaluated before the NUT server starts.
To enable this, the *nut-server* container image copies the rules it
contains to `/etc/udev/rules.d` if that directory is a mount point. By
bind mounting a directory on the host at that path, we can get a copy of
the rules files outside the container. Then, using a systemd path unit,
we can tell the udev daemon to reload and reevaluate its rules.
SELinux prevents processes in containers from writing to
`/etc/udev/rules.d` directly, so we have to use an intermediate location
and then copy the rules files to their final destination.